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Figure 1.
A convenient and selective halogenation of 4-(pyrazol-4-yl)-pyrimidines is described herein. This method
allows quick access to a diverse set of pyrazolyl-pyrimidine derivatives.
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Derivatives of pyrazolyl-pyrimidine have been reported as
promising pharmaceutical agents for the treatment of cancer,1

neurodegenerative diseases,2 diabetes,3 and inflammation.4 Among
these, an increasing number of 4-(pyrazol-4-yl)-pyrimidines have
been applied as a platform to generate inhibitors of various kinases
including Aurora kinases, c-Jun N-terminal kinases, p38 MAPK, and
Raf kinases.1,5 The general structures of such inhibitors can be
summarized as shown in Figure 1. On many occasions, the pyrim-
idine C(2) position is decorated with amines (R1NH) which pre-
sumably interact with the backbone of protein targets via a
hydrogen bond. In such scaffolds, the pyrazoles are further func-
tionalized with different aromatic/heteroaromatic/heterocyclic
rings (R4 or R6) to gain potency and/or selectivity. Published pro-
cedures to construct such ring systems involve generation of the
central pyrazole core from 1-aryl-2-pyrimidinylethanone 1 (Eq.
1),6 or the Sandmeyer reaction of 3-aminopyrazoles followed
either by displacement of the resulting halogen with heterocycles
(Eq. 2)5e or by Suzuki coupling (Eq. 3).1,5g Amine substituents are
introduced to the C(2) position of the pyrimidines by displacement
of a methylsulfonyl group.

At the outset of our program to generate structure–activity rela-
tionships around 4-(pyrazol-4-yl)-pyrimidines against kinase tar-
gets, few literature examples were present for the chemo- and
ll rights reserved.
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regioselective halogenation of 4-(pyrazol-4-yl)-pyrimidines. Most
of the reactions utilized a preassembled 3-aminopyrazole func-
tionality (e.g., 3 or 5) for the Sandmeyer conversion.5e,g Recogniz-
ing the utility of such substrates for the rapid assembly of
analogs via palladium-catalyzed reactions, we investigated facile
and selective halogenation reactions of 4-(pyrazol-4-yl)-pyrimi-
dines. Herein, we report the scope of such reactions and the appli-
cation of the resulting halogenated derivatives for further
functionalization.
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Our investigation of selective halogenation reactions focused on
the use of 4-(5-isopropyl-pyrazol-4-yl)-pyrimidines 9 and 10 as
starting materials. Preparation of 2-thiomethyl-pyrimidine 9 com-
menced with acylation of 4-methyl-2-thiomethyl-pyrimidine 7 to
afford the ketone 8. Treatment of 8 with the dimethyl acetal of
dimethylformamide, followed by condensation with hydrazine
provided 9 (Scheme 1).6 Subsequent oxidation of 9 with meta-chlo-
roperbenzoic acid provided 2-methylsulfonyl-pyrimidine 10 in
79% yield.

Treatment of 9 with N-bromosuccinimide in dimethylformam-
ide provided 5-bromo-pyrimidine 11 in 42% yield (Scheme 2).7

The regioselectivity of the bromination was guided by electrophilic
substitution to the 5-position of the pyrimidine as determined by
NMR.8 Interestingly, 2-methylsulfonyl-pyrimidine 10 underwent
bromination using identical conditions to afford exclusively 3-bro-
mo-pyrazole 12 in 61% yield, suggesting that conversion to the
methylsulfonyl group sufficiently reduced the electron density of
the pyrimidine ring to render the 3-position of the pyrazole the
most reactive site for electrophilic bromination.9 Chlorination of
10 using N-chlorosuccinimide gave a complex mixture of prod-
ucts.10 However, following protection of the 1H-pyrazole with a
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2-(trimethylsilyl)-ethoxymethyl group, chlorination of the result-
ing pyrazole 13 with N-chlorosuccinimide proceeded cleanly in
dimethylformamide at 40 �C to afford 14 in 48% yield. Both protec-
tion and chlorination of the pyrazole resulted as a mixture of pro-
tected pyrazole isomers.11

While searching for optimal conditions for the chlorination of
10, we observed that treatment of 10 with sulfuryl chloride in
acetic acid at 60 �C gave 2-chloro-pyrimidine 15 as the major
product in 43% yield (Scheme 3).12 To our knowledge, this is
the first example of conversion of a 2-methylsulfonyl-pyrimidine
into a 2-chloro-pyrimidine with sulfuryl chloride. Compound 15
was further elaborated via protection with a 2-(trimethylsilyl)-
ethoxymethyl group and chlorination with N-chlorosuccinimide
to afford bischloro 4-(pyrazol-4-yl)-pyrimidine 16 in 31% yield
over two steps. With 16 in hand, an opportunity for diversifying
the pyrimidine C(2) position via Buchwald–Hartwig cross-cou-
plings with non-nucleophilic amines was recognized.13 Utilizing
slightly modified reaction conditions which included the addi-
tion of a small amount of water, a coupling reaction between
16 and 17 proceeded smoothly to give the desired product in
50% yield.14 Removal of both the 2-(trimethylsilyl)-ethoxymethyl
group and the tert-butyloxycarbonyl group provided 18 in 87%
yield.14

In summary, we have demonstrated several selective halogena-
tion reactions of 4-(pyrazol-4-yl)-pyrimidine derivatives. This con-
venient preparation of versatile synthetic intermediates enabled
rapid assembly of a series of novel kinase inhibitors. Further stud-
ies on such analogs will be reported in due course.
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